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Abstract

The present paper describes a procedure to consider initial conditions in the frequency-domain analysis
of continuous media discretized by the FEM. The frequency-domain formulation presented here is based
on a standard DFT procedure, the FFT algorithm being employed to transform from time to the frequency
domain and vice versa. The standard Galerkin finite element method (displacement model) is used to
replace the original differential governing equation by an integral equation amenable to numerical solution.
The scalar wave equation (one- and two-dimensional) is used to illustrate the proposed approach. At the
end of the paper, examples of wave propagation for a taut string, a one-dimensional rod and a membrane
are presented to illustrate the robustness of the formulation presented here.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The structural engineer usually has to choose a suitable methodology when carrying out the
design of structures subjected to dynamic loads. Modal or nodal co-ordinates are used according
to the characteristics of the dynamic structural system under study, for example the latter is
usually preferred when strong non-linearities occur [1–5]. When either modal or nodal co-
ordinates apply, the former (with modal truncation) is usually a better choice as the analysis may
become much more economical.

The design work of engineers involved in daily time-domain dynamic analyses of structures has
been greatly facilitated by several commercial codes available which include a number of
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strategies for linear and non-linear analyses, and have excellent pre- and post-processing modules
which simplifies enormously the daily design activities (ANSYS, ABACUS, SAP2000 Plus,
COSMOS, GTSTRUDL, etc.).

A great deal of dynamic analyses can equivalently be performed either in time- or in frequency-
domain. In many cases however, frequency-domain approaches are more adequate, e.g., when the
physical properties are frequency dependent, when optimal design requires the use of spectra, etc.
[1,6–14]. Frequency- and time-domain approaches do not, in fact, compete against each other,
rather they are complementary.

Non-zero initial conditions contributions are naturally computed in standard time-marching
algorithms usually employed in FE step-by-step approaches, e.g., Central Differences, Newmark,
Wilson theta, a-Method, etc. [3–5,15]. The same applies to time-domain FE or BE procedures based
on convolution, where integral terms to compute initial conditions appear explicitly [1,2,16–23].

One serious limitation of frequency-domain approaches based on DFT/FFT algorithms
consists of the difficulty of such procedures to deal with non-null initial conditions [1,2,
6–9,16,23,24].

The present paper describes a pseudo-force approach to consider non-zero initial conditions in
DFT/FFT-based frequency-domain formulations. Generalized functions are used to mathema-
tically describe the pseudo-forces present in the formulation. The idea of expressing constants
with help of generalized functions when transform techniques are used is well known [16,25,26].
However, the context and the methodology adopted in the present paper to consider initial
conditions are quite unique. The subject has been studied previously by Veletsos and Ventura
[27,28] (see also Ref. [29]) who presented very useful procedures to consider initial conditions for
SDOF mechanical systems which can be used also to eliminate the need of extending analyses
periods (see Ref. [10]). However, the procedures presented in Refs. [27,28] are just useful for
methodologies that employ modal co-ordinates. Actually, Veletsos and Ventura [28] presented a
general approach (referred to by them as ‘solution from frequency response function’), which can
be nicely used either in modal or nodal co-ordinate analyses; however, for the latter it requires the
computation of the problem time-domain Green’s function from known frequency-domain matrix
transfer functions. Even for the powerful super computers available nowadays, this methodology
can only be recommended for very simple mechanical/structural systems.

The approach presented in the present paper is quite general. It can be used either when modal
or nodal co-ordinates, as well as any transform procedure, is employed (Fourier, Laplace,
Wavelet, etc.); and it is quite efficient.

It is straightforward to apply the methodology discussed here to hybrid frequency–time-domain
analyses (see Ref. [16]) where frequency dependent properties must be considered together with
non-linear behavior. The approach presented here can be employed to establish a real time
segmented procedure in modal co-ordinates, where the previous time–history is replaced by initial
conditions at the beginning of each segment, thus eliminating the need for convolution before the
initial time of the current segment (see Refs. [10,27] for approaches adequate to modal analyses).

One- and two-dimensional examples are studied here concerning the transverse vibration of a
taut string and a membrane, and the longitudinal vibration of a rod, analytical and BEM
solutions of which can be found in Refs. [17,18].

The starting point for the development of the formulation presented here is the paper
by Mansur et al. [10], where initial conditions are considered for the analysis of the discrete
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spring-dash pot-mass mechanical system by the ImFT [10] approach. Two important advances are
reported here: (1) extension of the ideas presented by Mansur et al. [10] to procedures based on
DFT/FFT approaches; (2) generalization of the methodology, so that it can be used by a FEM-
based algorithm either in nodal or in modal co-ordinates approaches (the same approach can be
followed by finite differences, finite volumes, boundary elements, etc.).

2. Basic equations

The study carried out here concerns one- and two-dimensional scalar wave propagation
problems. Only homogeneous isotropic systems will be considered; however, application of the
FEM to other more complex problems is trivial, e.g., non-homogeneous anisotropic elastic
medium (see Refs. [3,4,15]).

The scalar wave equation for isotropic homogeneous medium reads

r
@2uðx; tÞ

@t2
þ m

@uðx; tÞ
@t

� kr2uðx; tÞ ¼ Sðx; tÞ; ð1Þ

where r2 is the Laplace operator, k is the bulk modulus of elasticity, r is the density and m is the
viscous damping coefficient. uðx; tÞ is the unknown, which for the taut string and the membrane
case analyses is the transverse displacement and in the case of wave propagation in rods is the
longitudinal displacement; in acoustics it represents either pressure or velocity potential. Sðx; tÞ is
the source term acting upon the domain.

The undamped version of Eq. (1) is more frequently found in wave propagation texts [30–33] in
the form

r2uðx; tÞ �
1

c2

@2uðx; tÞ
@t2

¼ sðx; tÞ; ð2Þ

where the parameter c is the wave propagation velocity given by c ¼ ðk=rÞ1=2: The following initial
conditions are known over the O domain:

uðx; 0Þ ¼ u0ðxÞ;
@uðx; 0Þ

@t
¼ ’uðx; 0Þ ¼ v0ðxÞ: ð3Þ

Dirichlet and Neumann boundary conditions over the G boundary are given by

uðx; tÞ ¼ %uðx; tÞ xAGu; pðx; tÞ ¼ ruðx; tÞ � n ¼
@uðx; tÞ
@n

¼ %pðx; tÞ; xAGp; ð4Þ

where GðG ¼ Gu,GpÞ is the boundary of the O domain and n is the unit outward vector normal
to G:

3. DFT approach for finite element analysis

The weak form of the weighted residual Galerkin FEM statement for Eq. (1) reads:

k
Z
O
ðrW � ruÞdOþ m

Z
O
ðW ’uÞdOþ r

Z
O
ðW .uÞdO ¼

Z
O
ðWSÞdOþ

Z
Gp

ðW %pÞdGp; ð5Þ
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where W are the weighting functions, equal to interpolation functions since the Galerkin
approach is employed, and dots mean time derivatives. After the standard u-discretization FEM
procedure is introduced, Eq. (5) gives rise to [3,4,15]

M.uðtÞ þ C’uðtÞ þ KuðtÞ ¼ fðtÞ; ð6Þ

where .uðtÞ; ’uðtÞ and uðtÞ are, respectively, nodal acceleration, velocity and displacement vectors;
fðtÞ is the nodal equivalent force vector which accounts for contributions of body and surface
forces; M; C and K are mass, damping and stiffness matrices, respectively.

Initial conditions can be considered as pseudo-forces, in which case Eq. (6) can be written as

MD.uðtÞ þ CD’uðtÞ þ KDuðtÞ ¼ rðtÞ; ð7Þ

where

rðtÞ ¼ fðtÞ � fU0
Hðt � 0Þ þ fV0

dðt � 0Þ; ð8Þ

fU0
¼ Ku0; fv0 ¼Mv0 ð9; 10Þ

and DuðtÞ ¼ uðtÞ � u0; D’uðtÞ and D.uðtÞ are, respectively, first (velocity) and second (acceleration)
time derivatives of DuðtÞðD’uðtÞ ¼ ’uðtÞ and D.uðtÞ ¼ .uðtÞÞ: Hðt � 0Þ is the Heaviside function and
dðt � 0Þ is the Dirac delta function. It should be observed that Duð0Þ ¼ 0 and that the contribution
of the initial velocity is taken into account by the pseudo-force vector given by Eq. (8).

The entries of the pseudo-force vector fU0
; which accounts for the contributions of the initial

displacements, are in fact nodal reactions due to u0 as it is indicated in Eq. (9) above. The pseudo-
force vector fV0

; on the other hand, is obtained in a way that one has the effect of the impulsive
force fV0

dðt � 0Þ; indicated in Eq. (8), equal to the effect of the momentum variation due to the
initial velocity vector v0 as shown by Eq. (10). u0 and v0 are the finite element nodal vectors whose
entries are nodal values of the initial displacement and the initial velocity shown in Eq. (3).

Eq. (7) will be solved in the frequency-domain, so its Fourier transform has to be taken. The
solution in the frequency-domain has to be obtained first and the inverse-Fourier transform
carried out afterwards. Actually, a general approach cannot be analytical, thus the DFT and
IDFT algorithms, illustrated, respectively, by expressions (11) and (12) below are used, where i is
the imaginary unity, xn are equally spaced time samples, i.e., xn are elements of the discrete time
series {xn}, n ¼ 0;1,2,y(N�1), and Xk are elements of the DFT of {xn} ({Xk}, k ¼ 0;1,2,y(N�1),
is the frequency spectrum)

Xk ¼
1

N

XN�1

n¼0

xn exp
�2pikn

N

� �
; k ¼ 0; 1; 2;y; ðN � 1Þ; ð11Þ

xn ¼
XN�1

k¼0

Xk exp
�2pikn

N

� �
; n ¼ 0; 1; 2;y; ðN � 1Þ: ð12Þ

Each component of the solution spectrum is computed from the Fourier transform of Eqs. (7)
and (8), i.e.

DUðoÞ ¼ HðoÞRðoÞ ¼ HðoÞfðFT ½fðtÞ
Þ � fU0
ðFT ½Hðt � 0Þ
Þ þ fV0

ðFT ½dðt � 0Þ
Þg; ð13Þ

where DUðoÞ and RðoÞ are the Fourier transforms of DuðtÞ and rðtÞ; respectively (FT[ � ] indicates
Fourier transform), andHðoÞ is the frequency response transfer matrix, obtained from the inverse
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of the impedance matrix IðoÞ; given by

IðoÞ ¼ �o2Mþ oiCþ K: ð14Þ

It should be observed that in fact the inversion of the impedance matrix should be done only in
very special cases; usually one can use Gauss triangularization reduction or else, iterative solvers
which are computationally much more economical.

A modal approach can also be adopted [1–4,15]. By this procedure, assuming that the damping
matrix is proportional, the transfer function matrix H�ðoÞ; which correlates modal forces and the
modal displacements, becomes diagonal, reducing considerably the analyses computational cost.
H�ðoÞ can then be obtained from the inverse of the impedance matrix I�ðoÞ; given by

I � ðoÞ ¼ diag½�o2 þ 2xjwjoi þ w2
j 
; ð15Þ

where diag[ � ] means diagonal matrix, wj is the jth natural frequency of the system and xj is the
damping ratio of the jth mode (as mentioned before i is the imaginary unit).

It is important to notice that FTfdðt � 0Þg indicated in Eq. (13) can be obtained as

FTfdðt � 0Þg ¼ Df
Z þN

�N

dðt � 0Þeiot dtg ¼ Df1g ¼ D ¼
1

NDt
ð16Þ

as in the present case D ¼ 1=Tp where the extended period Tp ¼ NDt; Dt being the sampling time
interval.

One last remark, which is due concerns the pseudo-force fU0
ðFT ½Hðt � 0Þ
Þ used in Eq. (13) to

compute contributions from the initial displacement field. Due to the periodicity of Fourier
transform-based numerical algorithms, Heaviside functions cannot be considered acting during
the whole extended period: the DFT algorithm will not consider the Heaviside function jump
which occurs at t ¼ 0; rather, the algorithm sees Hðt � 0Þ as constant unit force acting from �N

to þN: The way to overcome this difficulty, which is inherent to DFT/FFT algorithms, is to
consider the extended period Tp to be twice as long as that required by usual estimatives
concerning short duration loads and keep fU0

constant from the initial time (t ¼ 0) to Tp and
make it null from time Tp to 2Tp: The necessity to consider the time of the analysis equal to 2Tp

instead of Tp makes the DFT/FFT algorithm more expensive when initial displacements
contributions have to be computed than when initial velocities are present in the analysis, as the
former has to be considered as a long duration load whereas the latter has the effect of a short
duration one. However, it is important to observe that if the externally applied loads are of long
duration, an extended period length larger than Tp will have to be considered anyway, thus the
inclusion of the initial displacement contribution will not increase the computational cost.

4. Additional remarks concerning the dynamic equilibrium equations

This section presents a complementary discussion concerning the derivations leading from
Eqs. (5) to (10). Standard FEM procedures [3–5] were followed; the unusual about the
developments presented in Section 3 concerns considering contributions of initial displacement
and initial velocity, explicitly, via the pseudo-forces equivalent nodal vectors fu0

Hðt � 0Þ and
fv0dðt � 0Þ; respectively.
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The pseudo-force vector fv0dðt � 0Þ; whose contribution is equivalent to that of the initial
velocity v0ðxÞ; can be determined from the momentum principle, a basic postulate of continuum
mechanics, which quoting Malvern [34] can be described as: ‘‘the time rate of change of the total
momentum of a given set of particles equals the vector sum of all the external forces acting on the
particles of the set, provided Newton’s third law of action and reaction governs the internal
forces’’. Thus the contribution of the change in momentum from t ¼ 0 to 0+ can be computed via
a pseudo-body force fv0

ðx; tÞ per unit volume such that the equation ‘impulse=momentum
change’ is verified, i.e. Z

O0

Z 0þ

0

fv0
ðx; tÞ dt

 !
dO0 ¼

Z
O0
rv0ðxÞdO0: ð17Þ

The identity shown above must be satisfied for any arbitrarily chosen O0 subdomain (O0AO),
thus

fv0
ðx; tÞ ¼ rv0ðxÞdðt � 0Þ: ð18Þ

When the pseudo-body force fv0
ðx; tÞ is included on the right hand side of Eq. (5) the following

additional integral has to be computed

r
Z
O

Wv0ðxÞ dO
� �

dðt � 0Þ: ð19Þ

Considering that the space interpolation for v0ðxÞ is the same as that for .uðtÞ (which as usual in
finite elements formulations is the same as that of uðx; tÞ), the result of the integral indicated in
Eq. (19) is

Mv0dðt � 0Þ; ð20Þ

i.e., Eq. (10) is demonstrated. It should be observed that the derivation which transformed
Eq. (19) into Eq. (20) followed the same steps required to transform the third integral on the left
hand side of Eq. (5) into the matrix product indicated by the first term on the left hand side of
Eq. (6).

The pseudo-force vector fu0
can be obtained when the following is considered:

uðx; tÞ ¼ u0ðxÞ þ Duðx; tÞ; ’uðx; tÞ ¼ D ’uðx; tÞ; .uðx; tÞ ¼ D .uðx; tÞ: ð21Þ

Thus, Eq. (6) can be written as

MD.uþ CD’uþ Kðu0 þ DuÞ ¼ fðtÞ: ð22Þ

If one adds �ku0Hðt � 0Þ to both sides of Eq. (22) it can finally be written as

MD.uþ CD’uþ KDu ¼ rðtÞ � Ku0Hðt � 0Þ: ð23Þ

Eqs. (23) and (20) demonstrate the result presented in Eq. (8).
It should be observed that the procedure described above concerning the pseudo-force vector

fu0
leads to a physical interpretation where one can consider that the dynamical system was

maintained at its initial displacement configuration by pseudo-forces fu0
¼ ku0for tð�N; 0Þ; and

that at t ¼ 0 these pseudo-forces were canceled by the new applied forces �ku0Hðt � 0Þ:
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5. Numerical examples

5.1. Preliminary remarks

In all the examples presented here, results obtained with the DFT approach were compared
against those obtained with time-domain algorithms in order to check the accuracy of the
procedure proposed here to consider non-null initial conditions in frequency-domain analyses.
The time-domain results of example 1 were obtained using the computer code presented by
Cooper [35] based on a time-domain finite difference procedure. Both time- and frequency-
domain analyses of example 1 were performed in nodal co-ordinates, whereas examples 2 and 3
employed modal co-ordinates for both time- and frequency-domain analyses. Time-domain
results presented in examples 2 and 3 were obtained using a standard Galerkin finite element
method approach based on the Newmark time-marching algorithm, the trapezoidal rule as
described by Bathe [3], Hughes [15], Zienkiewicz and Taylor [4] being used. The same time step
‘length’ Dt was adopted for both time- and frequency-domain analyses; however, the number of
sampling points (N) adopted for the latter was greater than that for the former, as the extended
period must be twice as large as the usual when initial displacement is considered. Linear finite
elements were used in all the analyses presented here. The CST element was employed in the two-
dimensional analyses; the one-dimensional FE approach employed a taut string element, mass
and stiffness matrices being quite similar to those of truss elements in local co-ordinates.

5.2. Example 1

This example deals with the analysis of a taut string, which is fixed at its extremities and is
subjected to prescribed initial velocity and displacement over its entire length. No external load is
applied. The string characteristics are: L ¼ 10:0 m (length); c ¼ 1:0 m/s (wave propagation
velocity); a viscous damping constant such that z ¼ m=k ¼ 0:10 s/m2(see Eq. (1)) was employed in
the time- and frequency-domain analyses carried out in this example. The initial conditions
adopted here are given by initial velocity: v0ðxÞ ¼ A1 sinðpx=LÞ; initial displacement: u0ðxÞ ¼
A2 sinðpx=LÞ; where for the present analysis: A1 ¼ 10�3 m/s and A2 ¼ 10�3 m.

The natural frequencies can be easily obtained for this string model. The fundamental frequency
(which is dominant) for instance is given by w0 ¼ pcL�1 and as a consequence an extended period
can be estimated by: Tp ¼ aL lnð10Þ=ðxpcÞ ¼ 0:733aL=ðxcÞ; where x ¼ zc=2p ¼ 0:01592: Adopting
a ¼ 2:75 (see Ref. [10]) one has for the present case: 2Tp ¼ 2533 s. Taking this Tp estimation into
consideration, the discretization parameters considered for the model were: Dt ¼ 1:0 s, 2Tp ¼ 4096 s
and N=212=4096. Twenty linear elements were used for the one-dimensional finite element mesh.

The string displacement time–history is shown in Fig. 1. Fig. 1(a) shows the results for the
model submitted to initial displacement only. The results depicted in Fig. 1(b) are due to initial
velocity only.

5.3. Example 2

In this example the rod shown in Fig. 2 is analyzed. The domain and the boundary of this
example are such that this two-dimensional analysis in fact reproduces classical one-dimensional
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Fig. 1. Snap shots of the taut string. (a) Prescribed initial displacement; (b) prescribed initial velocity. , present

method; —, Cooper [35].

W.J. Mansur et al. / Journal of Sound and Vibration 270 (2004) 767–780774



rod results, as previously described by Mansur [17] and Mansur et al. [18]. The rod (see Fig. 2(a))
is fixed on its r.h.s. vertical boundary part, Ga , located at x ¼ a; and has natural boundary
conditions over its horizontal parts Gbðy ¼ bÞ; Gcðy ¼ 0Þ and over its vertical boundary part G0

defined by x ¼ 0:
In the first analysis (case 1) the rod is excited by an uniform external load pðx; tÞ ¼ PHðt � 0Þ;

suddenly applied on Ga and kept constant until the end of the analysis. Initial conditions over the
domain and surface forces on Gb and Gc are null. The rod is modelled by a bi-dimensional finite
element mesh with 800 linear triangular elements as shown in Fig. 2(b).

The second analysis (case 2) considers boundary conditions identical to those of the first
analysis, however the rod now is subjected to initial displacement and velocity, prescribed over the
shaded area O0 indicated in Fig. 2(a), expressed by

u0ðx; yÞ ¼
P

E

a

4
� x

	 

1 � H x �

a

4

	 
n o
;

v0ðx; yÞ ¼
Pc

E
1 � H x �

a

4

	 
n o
;

where E is Young’s modulus. When damping is not considered, the solution for this second
analysis is the same as that of case 1, but with the time dephased by (a=4c), i.e., u0 x; y; tð Þ ¼
u x; y; t � a=4c

 �

; where u0 refers to case 1 and u refers to case 2. Similar relations hold for stresses,
velocities, strains, surface tractions, etc.

The following numerical values were adopted for this analysis: a ¼ 1:00 m (length) and
b ¼ 0:25 m (height); c=100 m/s (wave propagation velocity); x ¼ 6:5% (viscous damping ratio);
and P=E ¼ 0:01: The tolerance parameter (see Ref. [10]) considered for this rod analysis was
a ¼ 3:50; which resulted in an extended period 2Tp ¼ 1:58 s. The time discretization parameters
adopted for the frequency-domain analyses were Dt ¼ 5 � 10�5 s and N ¼ 215:

As u0ðx; yÞ is independent of the y co-ordinate, and varies linearly with x; within [0,a/4], the
nodal force fU0

equivalent to u0ðx; yÞ are zero all over O0; and not null on x ¼ 0 and a/4; i.e., the
effect of u0ðx; yÞ in this case is equivalent to that of two body sources of intensity pðx; yÞ ¼
ktgy ¼ kð4u0ð0; yÞ=aÞ; suddenly applied at t ¼ 0; and distributed over the vertical lines x ¼ 0 and
a/4, as illustrated in Fig. 3(a). Fig. 3(b) illustrates the equivalent load which simulates initial
velocities.

The results obtained for the two analyses carried out here (labeled case 1 and case 2 as
mentioned above) are depicted in Fig. 4. The time-domain FEM result for the undamped model,
also displayed in Fig. 4, is quite close to the analytical solution (see Refs. [17,18]) and can be used
as such for all practical purposes. Fig. 4 shows the excellent agreement between time- and
frequency-domain approaches for both, cases 1 and 2; results are very close. The comparison of
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cases 1 and 2 responses also show that the a=4c phase difference is accurately represented; thus the
approach proposed here is also accurate in what concerns time shifting.

5.4. Example 3

The subject of this investigation is the transverse motion of a square membrane (see Ref. [17])
with initial velocity v0ðx; yÞ ¼ c prescribed over the shaded domain O0 depicted in Fig. 5(a) and
zero displacements prescribed over all the G boundary. The finite element mesh adopted can be
seen in Fig. 5(b), where the transverse motion obtained for the membrane at time t ¼ 1:50 s is
depicted. Five thousand linear triangular elements were used in the mesh.

The displacement time–history at the center point of the membrane (point A, see Fig. 5(a)) is
shown in Fig. 6. The numerical values for this analysis parameters were: a ¼ 1:0 m; c ¼ 1:0 m/s
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Initial displacement Initial velocity

Vectors representing the applied initial
displacement u0 (x,y)

Vectors representing the applied initial
velocity v0 (x,y)

Vectors representing the pseudo-force
fU0(a)

Vectors representing the pseudo-force
fV0(b)

Fig. 3. Initial conditions and equivalent pseudo-forces: (a) nodal pseudo-load vector fu0
null everywhere except at x ¼ 0

and a/4; (b) initial velocity replaced by the pseudo-load vector fv0
:
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Fig. 5. Membrane analysis: (a) geometry definition, boundary and initial conditions; (b) finite element mesh represent-

ing the membrane transverse motion at time t ¼ 1:50 s.

W.J. Mansur et al. / Journal of Sound and Vibration 270 (2004) 767–780 777



(wave propagation velocity); and x ¼ 2:5% (viscous damping ratio). The membrane fundamental
frequency is about 4.5 s�1 and, as a consequence, by adopting a ¼ 2:0; the extended period can be
estimated as Tp ¼ 41:0 s. The time interval and the number of sampling points considered for this
analysis are, respectively, Dt ¼ 0:0025 s and N ¼ 214: The results obtained by frequency- (FFT)
and time-domain (Newmark) procedures are quite close, so that their values plotted in Fig. 6
appear to coincide. The analytical result for the undamped model is also shown in Fig. 6.

6. Conclusions

This paper has presented a new procedure for considering the effects of initial conditions in
frequency-domain analyses of continua media discretized by the FEM. The procedure described is
quite general and increases the range of applicability of frequency-domain approaches as it makes
it possible to develop time segmented algorithms in which convolution integrals to consider
previous time–history need not be computed, i.e., only the current analysis segment must be
considered at each step.

Two main papers dealt with this subject previously, Veletsos and Ventura [27] and Mansur
et al., [10]. The formulation discussed in Ref. [27] is very useful; however, its application is
restricted to Fourier transform-based algorithms and modal co-ordinates. The approach
presented in Ref. [27] can also be used in nodal co-ordinates but it is not practical, as it requires
very time consuming computations of time-domain the Green functions. The approach presented
in Ref. [10] is also restricted to modal co-ordinates and Fourier transform-based algorithms. In
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Fig. 6. Displacement time–history at point A (a/2, a/2) for the membrane analysis: &, damped frequency-domain

analysis; ——, damped time-domain analysis; UUUUUUUU, undamped analytical solution.
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fact, the formulation presented in Ref. [10] was specifically developed within the context of the so-
called implicit Fourier transform formulation (ImFT).

The approach presented here is suitable either to nodal or modal co-ordinates analyses, can be
extended to other numerical methods, e.g., boundary elements, finite differences, finite volumes
etc., and also can be used with other transform approaches, e.g., Laplace, wavelets, etc.

One- and two-dimensional problems governed by the scalar wave equation were analyzed, and
the results obtained were quite accurate. The approach discussed here can easily be extended to
three-dimensional scalar wave propagation analysis, elastodynamics, poroelastodynamics,
acoustics, soil- and fluid-structure interaction, and to many others areas of engineering.

Another important remark concerning the formulation presented here is that it renders possible
to do non-linear analysis in the frequency-domain, where only the current analysis segment is
considered.
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